USN

10MAT11

First/Second Semester B.E. Degree Examination, June/July 2013 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.

3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A

Choose your answers for the following: a.

(04 Marks)

i) If
$$y = 3^{5x}$$
 then y_n is

A)
$$(3 \log 5)^n e^{5x}$$

3)
$$(5 \log 3)$$
" e^{3x}

C)
$$(5 \log 3)^{-11} e^{3x}$$

B)
$$(5 \log 3)^n e^{5x}$$
 C) $(5 \log 3)^{-n} e^{5x}$ D) $(5 \log 3)^n e^{-5x}$

ii) If
$$y = \cos^2 x$$
 then y_n is

A)
$$2^{n+1} \cos(n\pi/2 + 2x)$$

A)
$$2^{n+1}\cos(n\pi/2+2x)$$
 B) $2^{n-1}\cos(n\pi/2+2x)$ C) $2^{n-1}\cos(n\pi/2-2x)$ D) $2^{n+1}\cos(n\pi/2-2x)$

C)
$$2^{n-1} \cos(n\pi/2 - 2x)$$

$$D) Z = \cos(i\pi t/2 - 2x)$$

The Lagrange's mean value theorem for the function $f(x) = e^x$ in the interval [0, 1] is

A)
$$C = 0.5413$$

B)
$$C = 2.3$$

Expansion of $log(1 + e^x)$ in powers of x is _____. iv)

Expansion of
$$\log(1 + e^x)$$
 in powers of x is _____. A) $\log 2 - x/2 + x^2/8 + x^4/192 + \cdots$
B) $\log 2 + x/2 + x^2/8 - x^4/192 + \cdots$ C) $\log 2 + x/2 + x^2/8 + x^4/192 + \cdots$ D) $\log 2 - \frac{x}{2} - \frac{x$

D)
$$\log 2 - \frac{x^2}{x^2} - \frac{x^4}{x^4} +$$

If $y^{1/m} + y^{-1/m} \neq 2x$ prove that $(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0$

Verify the Rolle's theorem for the functions: $f(x) = e^x (\sin x - \cos x)$ in $(\pi/4.5\pi/4)$.

(06 Marks)

d. By using Maclaarin's theorem expand log sec x up to the term containing x^6 .

(04 Marks)

2 Choose your answers for the following: a.

(04 Marks)

i) The indeterminate form of
$$\lim_{x\to 0} \frac{a^x - b^x}{x}$$
 is A) $\log(\frac{b}{a})$ B) $\log(\frac{a}{b})$ C) 1 D) -1

The angle between the radius vector and the tangent for the curves $\mathbf{r} = \mathbf{a}(1 - \cos \theta)$ is

A)
$$\theta/2$$

B)
$$-\theta/2$$

C)
$$\pi/2+\theta$$

A) 2

A) r

D)
$$\pi/2-\theta/2$$
.

The polar form of a curve is_ A) $r = f(\theta)$

B) $\theta = f(y)$ **C**) r = f(x) **D**) None of these

iv) The rate at which the curve is bending called ... A) Radius of curvature; B) Curvature; C) Circle of curvature; D) Evaluate.

Evaluate $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}$. b.

d.

3

(06 Marks) (06 Marks)

Find the angles of intersection of the following pairs of curves, $r = a\theta/(1+\theta)$; $r = a/(1+\theta^2)$. c.

(04 Marks)

(04 Marks)

Choose your answers for the following: a.

C) 2x **D)** 2y

i) If
$$u = x^2 + y^2$$
 then $(\partial^2 u)/(\partial x \partial y)$ is equal to

If
$$z = f(x, y)$$
 where $x = u - v$ and $y = uv$ then $(u + v)(\partial z / \partial x)$ is

A)
$$u(\partial z/\partial u) - v(\partial z/\partial v)$$
 B) $u(\partial z/\partial u) + v(\partial z/\partial v)$ C) $\partial z/\partial u + \partial z/\partial v$

B) 0

D)
$$\partial z/\partial u - \partial z/\partial v$$

iii) If
$$x = r \cos \theta$$
, $y = r \sin \theta$ then $[\partial(r, \theta)]/[\partial(x, y)]$ is

In errors and approximations $\partial x/x$. $\partial y/y$, $\partial f/f$ are called A) relative error

Find the radius of curvature at (3a/2, 3a/2) on $x^3 + y^3 = 3axy$.

D) none of these

b. If
$$x^x y^y z^z = c$$
, show that $\frac{\partial^2 z}{\partial x \partial y} = -[x \log ex]^{-1}$, when $x = y = z$.

(06 Marks)

Obtain the Jacobian of $\partial(x, y, z)/\partial(r, \theta, \phi)$ for change of coordinate from three dimensional Cartesian coordinates to spherical polar coordinates. (06 Marks)

In estimating the cost of a pile of bricks measured as 2m×15m×1.2m, the tape is stretched +1% beyond the standard length. If the count is 450 bricks to 1 cu.cm and bricks cost of 530 per 1000, find the approximate error in the cost. (04 Marks)

Choose your answers for the following:

(04 Marks)

i) If
$$\vec{R} = xi + yj + zk$$
 then div \vec{R}

If
$$\overline{F} = 3x^2i - xyj + (a-3)xzk$$
 is Solenoidal then a is equal to _____ A) 0 B) -2 C) 2

 \mathbf{C}) -3

iii) If
$$\overline{F} = (x+y+1)i+j-(x+y)k$$
 then \overline{F} curl \overline{F} is ____. A) 0 B) $x+y$ C) $x+y+z$ D) $x-y$ iv) The scale factors for cylindrical coordinate system (ρ, ϕ, z) are given by

A)
$$(\rho, 1, 1)$$

B)
$$(1, 0, 1)$$

$$(1, 1, \rho)$$

D) 2

b. Prove that
$$\operatorname{curl} \overline{A} = \operatorname{grad} (\operatorname{div} \overline{A}) - \nabla^2 A$$
.

Find the constants a, b, c such that the vector $\vec{F} = (x + y + az)i + (bx + 2y - z)j + (x + cy + 2z)k$ is irrotational. c.

Derive an expression for $\nabla \cdot \overline{A}$ in orthogonal curvilinear coordinates. Deduce $\nabla \cdot \overline{A}$ is rectangular coordinates. (04 Marks)

(0, 0, 0)

b. Using elementary transformation reduce each of following matrices to the normal form, $\begin{vmatrix} 1 & -1 & 2 & 5 \end{vmatrix}$. (06 Marks)

Test for consistency and solve the system, 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16.

Apply Gauss-Jordan method to solve the system of equations, 2x + 5y + 7z = 52, 2x + y - z = 0, d. x + y + z = 9(04 Marks)

8 Choose your answers for the following:

(04 Marks)

(04 Marks)

A) $A = A^2$ B) $A = A^{-1}$ C) $AA^{-1} = I$ A square matrix A is called orthogonal if, D) None

The eigen values of the matrix, $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are A) 2, 3, 8 B) 2, 3, 9 C) 2, 2, 8 D) None ii)

The eigen vector X of the matrix A corresponding to eigen value λ and satisfy the equation, iii)

A) $AX = \lambda X$ B) $\lambda(A-X)=0$ C) $XA - A\lambda = 0$

Two square matrices A and B are similar if, A) A = B; B) $B = P^{-1}AP$; C) A' = B'; D) $A^{-1} = B^{-1}AP$

Show that the transformation, $y_1 = 2x_1 - 2x_2 - x_3$, $y_2 = -4x_1 + 5x_2 + 3x_3$, $y_3 = x_1 - x_2 - x_3$ is, regular and find the inverse transformations. (06 Marks)

Diagonalize the matrix, $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$. (06 Marks)

Reduce the quadratic form, $x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 8x_2x_3$ into sum of squares.